3,747 research outputs found

    Optimization of the leak conductance in the squid giant axon

    Full text link
    We report on a theoretical study showing that the leak conductance density, \GL, in the squid giant axon appears to be optimal for the action potential firing frequency. More precisely, the standard assumption that the leak current is composed of chloride ions leads to the result that the experimental value for \GL is very close to the optimal value in the Hodgkin-Huxley model which minimizes the absolute refractory period of the action potential, thereby maximizing the maximum firing frequency under stimulation by sharp, brief input current spikes to one end of the axon. The measured value of \GL also appears to be close to optimal for the frequency of repetitive firing caused by a constant current input to one end of the axon, especially when temperature variations are taken into account. If, by contrast, the leak current is assumed to be composed of separate voltage-independent sodium and potassium currents, then these optimizations are not observed.Comment: 9 pages; 9 figures; accepted for publication in Physical Review

    Instability of synchronized motion in nonlocally coupled neural oscillators

    Full text link
    We study nonlocally coupled Hodgkin-Huxley equations with excitatory and inhibitory synaptic coupling. We investigate the linear stability of the synchronized solution, and find numerically various nonuniform oscillatory states such as chimera states, wavy states, clustering states, and spatiotemporal chaos as a result of the instability.Comment: 8 pages, 9 figure

    A collaborative tool for mobilizing knowledge in agrobiodiversity and the interface with climate change: the Platform for Agrobiodiversity Research

    Get PDF
    Poster presented at 2nd ANAFE International Symposium. Lilongwe (Malawi), Jul 200

    Single-File Diffusion of Externally Driven Particles

    Full text link
    We study 1-D diffusion of NN hard-core interacting Brownian particles driven by the space- and time-dependent external force. We give the exact solution of the NN-particle Smoluchowski diffusion equation. In particular, we investigate the nonequilibrium energetics of two interacting particles under the time-periodic driving. The hard-core interaction induces entropic repulsion which differentiates the energetics of the two particles. We present exact time-asymptotic results which describe the mean energy, the accepted work and heat, and the entropy production of interacting particles and we contrast these quantities against the corresponding ones for the non-interacting particles

    Cluster synchronization in an ensemble of neurons interacting through chemical synapses

    Full text link
    In networks of periodically firing spiking neurons that are interconnected with chemical synapses, we analyze cluster state, where an ensemble of neurons are subdivided into a few clusters, in each of which neurons exhibit perfect synchronization. To clarify stability of cluster state, we decompose linear stability of the solution into two types of stabilities: stability of mean state and stabilities of clusters. Computing Floquet matrices for these stabilities, we clarify the total stability of cluster state for any types of neurons and any strength of interactions even if the size of networks is infinitely large. First, we apply this stability analysis to investigating synchronization in the large ensemble of integrate-and-fire (IF) neurons. In one-cluster state we find the change of stability of a cluster, which elucidates that in-phase synchronization of IF neurons occurs with only inhibitory synapses. Then, we investigate entrainment of two clusters of IF neurons with different excitability. IF neurons with fast decaying synapses show the low entrainment capability, which is explained by a pitchfork bifurcation appearing in two-cluster state with change of synapse decay time constant. Second, we analyze one-cluster state of Hodgkin-Huxley (HH) neurons and discuss the difference in synchronization properties between IF neurons and HH neurons.Comment: Notation for Jacobi matrix is changed. Accepted for publication in Phys. Rev.

    Dynamic range of hypercubic stochastic excitable media

    Full text link
    We study the response properties of d-dimensional hypercubic excitable networks to a stochastic stimulus. Each site, modelled either by a three-state stochastic susceptible-infected-recovered-susceptible system or by the probabilistic Greenberg-Hastings cellular automaton, is continuously and independently stimulated by an external Poisson rate h. The response function (mean density of active sites rho versus h) is obtained via simulations (for d=1, 2, 3, 4) and mean field approximations at the single-site and pair levels (for all d). In any dimension, the dynamic range of the response function is maximized precisely at the nonequilibrium phase transition to self-sustained activity, in agreement with a reasoning recently proposed. Moreover, the maximum dynamic range attained at a given dimension d is a decreasing function of d.Comment: 7 pages, 4 figure

    Monte Carlo simulation for statistical mechanics model of ion channel cooperativity in cell membranes

    Full text link
    Voltage-gated ion channels are key molecules for the generation and propagation of electrical signals in excitable cell membranes. The voltage-dependent switching of these channels between conducting and nonconducting states is a major factor in controlling the transmembrane voltage. In this study, a statistical mechanics model of these molecules has been discussed on the basis of a two-dimensional spin model. A new Hamiltonian and a new Monte Carlo simulation algorithm are introduced to simulate such a model. It was shown that the results well match the experimental data obtained from batrachotoxin-modified sodium channels in the squid giant axon using the cut-open axon technique.Comment: Paper has been revise
    corecore